5-3 Videos Guide

5-3a

Theorem:

- Fundamental Theorem for Line Integrals: If C is a smooth curve and f is a differentiable function whose gradient ∇f is continuous on C, then $\int_{C} \boldsymbol{\nabla} f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))$, where $\mathbf{r}(t), a \leq t \leq b$ describes C

$$
=f\left(x_{2}, y_{2}, z_{2}\right)-f\left(x_{1}, y_{1}, z_{1}\right) \text { (an analogous expression exists for the } \mathbb{R}^{2} \text { case) }
$$

5-3b

- Description of path independence
- $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$ for any two paths C_{1} and C_{2} that connect the same two points

5-3c

Theorems:

- $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for all closed paths $\Leftrightarrow \int_{C} \mathbf{F} \cdot d \mathbf{r}$ is path independent
$\Rightarrow \mathbf{F}$ is a conservative vector field (this means there exists a potential function f of \mathbf{F})
$\Rightarrow \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$

Exercises:

5-3d
(a) Find a function f such that $\mathbf{F}=\boldsymbol{\nabla} f$ and (b) use part (a) to evaluate $\int^{C} \mathbf{F} \cdot d \mathbf{r}$ along the given curve C.

- $\mathbf{F}(x, y)=\left(3+2 x y^{2}\right) \mathbf{i}+2 x^{2} y \mathbf{j}$,
C is the arc of the hyperbola $y=1 / x$ from $(1,1)$ to $\left(4, \frac{1}{4}\right)$

5-3e

- $\mathbf{F}(x, y, z)=\left(y^{2} z+2 x z^{2}\right) \mathbf{i}+2 x y z \mathbf{j}+\left(x y^{2}+2 x^{2} z\right) \mathbf{k}$, $C: x=\sqrt{t}, y=t+1, z=t^{2}, 0 \leq t \leq 1$

5-3f

- Law of Conservation of Energy

